реферат
Главная

Рефераты по сексологии

Рефераты по информатике программированию

Рефераты по биологии

Рефераты по экономике

Рефераты по москвоведению

Рефераты по экологии

Краткое содержание произведений

Рефераты по физкультуре и спорту

Топики по английскому языку

Рефераты по математике

Рефераты по музыке

Остальные рефераты

Рефераты по авиации и космонавтике

Рефераты по административному праву

Рефераты по безопасности жизнедеятельности

Рефераты по арбитражному процессу

Рефераты по архитектуре

Рефераты по астрономии

Рефераты по банковскому делу

Рефераты по биржевому делу

Рефераты по ботанике и сельскому хозяйству

Рефераты по бухгалтерскому учету и аудиту

Рефераты по валютным отношениям

Рефераты по ветеринарии

Рефераты для военной кафедры

Рефераты по географии

Рефераты по геодезии

Рефераты по геологии

Рефераты по геополитике

Рефераты по государству и праву

Рефераты по гражданскому праву и процессу

Рефераты по делопроизводству

Рефераты по кредитованию

Рефераты по естествознанию

Рефераты по истории техники

Рефераты по журналистике

Рефераты по зоологии

Рефераты по инвестициям

Рефераты по информатике

Исторические личности

Рефераты по кибернетике

Рефераты по коммуникации и связи

Реферат: Строение и функции хлоропластов. Геном пластид. Пропластиды

Реферат: Строение и функции хлоропластов. Геном пластид. Пропластиды

Федеральное Агентство науки и образования.

Сибирский Федеральный Университет.

Институт Фундаментальной Биологии и Биотехнологии.

Кафедра биотехнологии.

РЕФЕРАТ

На тему: Строение и функции хлоропластов.

Геном пластид. Пропластиды.

Выполнила: студентка

31гр. Осипова И.В.

Проверила:

доцент кафедры

биотехнологии

д.б.н. Голованова Т.И.

Красноярск,2008г.


Содержание.

Содержание. 2

Введение. 3

Хлоропласты... 4

Функции хлоропластов. 6

Геном пластид.. 9

Пропластиды... 13

Заключение. 15

Литература. 16

 


Введение.

Пластиды это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы). Пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза.

Всем пластидам свойственен ряд общих черт. Они имеют собственный геном, одинаковый у всех представителей одного вида растений, собственную белоксинтезирующую систему; от  цитозоля пластиды отделены двумя мембранами - наружной и внутренней. Для некоторых фототрофных организмов число пластидных мембран может быть больше. Например, пластиды эвглен и динфлагеллят окружены тремя, а у золотистых, бурых, желто-зелёных и диатомовых водорослей они имеют четыре мембраны. Это связано с происхождением пластид. Считается, что симбиотический процесс, результатом которого стало формирование пластид, в процессе эволюции происходило неоднократно (как минимум, трижды).

У высших растений найден целый набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт.


Хлоропласты.

Хлоропласты это структуры, в которых происходят фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров.Структуры удлиненной формы с шириной 2-4 мкм и протяженностью 5-10 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм.

у зеленых водорослей может быть по одному хлоропласту на клетку. Обычно на клетку высших растений приходится в среднем 10-30 хлоропластов. Встречаются клетки с огромным количеством хлоропластов. Например, в гигантских клетках палисадной ткани махорки обнаружено около 1000 хлоропластов.

Хлоропласты представляют собой структуры, ограниченные двумя мембранами – внутренней и внешней. Внешняя мембрана, как и внутренняя, имеет толщину около 7 мкм, они отделены друг от друга межмембранным пространством около 20-30 нм. Внутренняя мембрана хлоропластов отделяет строму пластиды, аналогичную матриксу митохондрий. В строме зрелого хлоропласта высших растений видны два типа внутренних мембран. Это – мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Ламеллы стромы (толщиной около 20 мкм) представляют собой плоские полые мешки или же имеют вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно друг другу и не образуют связей между собой.

Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30 нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами.

Число тилакоидов на одну грану очень варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2 нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом, как бы связывают между собой отдельные граны хлоропласта. Однако полости камер тилакоидов всезда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы. Ламеллы стромы и мембраны тилакоидов образуются путем отделения от внутренней мембраны при начальных этапах развития пластид.

В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

Характерным для хлоропластов является наличие в них пигментов, хлорофиллов, которые и придают окраску зеленым растениям. При помощи хлорофилла зеленые растения поглощают энергию солнечного света и превращают ее в химическую.

В хлоропластах содержатся различные пигменты. В зависимости от вида растений это:

хлорофилл:

- хлорофилл А (сине-зеленый) - 70 % (у высших растений и зеленых водорослей);

- хлорофилл В (желто-зеленый) - 30 % (там же);

- хлорофилл С, D и E встречается реже - у других групп водорослей;

каротиноиды:

- оранжево-красные каротины (углеводороды);

- желтые (реже красные) ксантофиллы (окисленные каротины). Благодаря ксантофиллу фикоксантину хлоропласты бурых водорослей (феопласты) окрашены в коричневый цвет;

фикобилипротеиды, содержащиеся в родопластах (хлоропластах красных и сине-зеленых водорослей):

- голубой фикоцианин;

- красный фикоэритрин.

Функции хлоропластов.

Хлоропласты- это структуры, в которых осуществляются фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров.

Характерным для хлоропластов является наличие в них пигментов хлорофиллов, которые и придают окраску зеленым растениям. При помощи хлорофилла зеленые растения поглощают энергию солнечного света и превращают её в химическую. Поглощение света с определённой длиной волны приводит к изменению в структуре молекулы хлорофилла, при этом она переходит в возбуждённое, активированное состояние. Освобождающаяся энергия активированного хлорофилла через ряд промежуточных этапов передаётся определённым синтетическим процессам, приводящим к синтезу АТФ и к восстановлению акцептора электронов НАДФН (никотинамидадениндинуклеотид-фосфат) до НАДФ*Н, которые тратятся в реакции связывания СО2 и синтезе сахаров.

Суммарная реакция фотосинтеза может быть выражена следующим образом:

nCO2+ nH2O—(CH2O)n+nO2

Таким образом, главный итоговый процесс здесь- связывание двуокиси углерода с использованием воды для образования различных углеводов и для выделения кислорода. Молекула кислорода, который выделяется в процессе фотосинтеза у растений, образуется за счёт гидролиза молекулы воды. Следовательно, процесс включает в себя процесс гидролиза воды, которая служит одним из источников электронов или атомов водорода. Биохимические исследования показали, что процесс фотосинтеза представляет собой сложную цепь событий, заключающую в себе 2 стадии: световую и темновую. Первая, протекающая только на свету, связанная с поглощением света  хлорофиллами и с проведением фотохимической реакции (реакция Хилла). Во второй фазе, которая может идти в темноте, происходят фиксация и восстановление СО2, приводящие к синтезу углеводов.

В результате световой фазы осуществляются фотофосфорилирование, синтез АТФ из АДФ и фосфата с использованием цепи переноса электронов, а также восстановление кофермента НАДФ в НАДФН, происходящее при гидролизе и ионизации воды. В этой фазе фотосинтеза энергия солнечного света возбуждает электроны в молекулах хлорофилла, которые расположены в мембранах тилакоидов. Эти возбуждённые электроны переносятся по компонентам окислительной цепи в тилакоидной мембране, подобно тому как электроны транспортируются по дыхательной цепи в мембране митохондрий. Энергия, освобождающаяся при таком переносе электронов, используется для перекачивания протонов через тилакоидную мембрану внутрь тилакоидов, что приводит к возрастанию разности потенциалов между стромой и пространством внутри тилакоида. Как и в мембранах крист митохондрий, в мембранах тилакоидов встроены молекулярные комплексы АТФ-синтетазы, которые начинают затем транспортировать протоны обратно в матрикс хлоропласта, или строму, и параллельно этому фосфорилировать АДФ, т. е. синтезировать АТФ.

Таким образом, в результате световой фазы происходят синтез АТФ и восстановление НАДФ, которые затем используются при восстановлении СО2, в синтезе углеводов уже в темновой фазе фотосинтеза.

В темновой (не зависящей от потока фотонов) стадии фотосинтеза за счет восстановленного НАДФ и энергии АТФ осуществляется связывание атмосферного СО2, что приводит к образованию углеводов. Процесс фиксации СО2 и образования углеводов состоит из многих этапов, в которых участвует большое число ферментов (цикл Кальвина). Биохимическими исследованиями показано, что ферменты, участвующие в темновых реакциях, содержатся в водорастворимой фракции хлоропластов, содержащей компоненты матрикса-стромы этих пластид.

Процесс восстановления СО2 начинается с его присоединения к рибулозодифосфату-углеводу, состоящему из пяти атомов углерода, с образованием короткоживущего С6-соединения, которое сразу распадается на два С3-соединения, на две молекулы глицерид-3-фосфата.

Именно на этом этапе при карбоксилировании рибулозодифосфата и роисходит связывание СО2. Дальнейшие  реакции превращения глицерид-3-фосфата приводят к синтезу различных гесоз и пентоз, к регенерации рибулозодифосфата и к его новому вовлечению в цикл реакций связывания СО2. В конечном счёте в хлоропласте из шести молекул СО2 образуется одна молекула гексозы. Для этого процесса требуется 12 молекул НАДФН и 18 молекул АТФ, поступающих из световых реакций фотосинтеза. Образовавшийся в результате темновой реакции фруктоза-6-фосфат даёт начало сахарам, полисахаридам (крахмал) и галактолипидам. В строме хлоропластов, кроме того, из части глицерид-3-фосфата образуются жирные кислоты, аминокислоты и крахмал. Синтез сахарозы завершается в цитоплазме.

В строме хлоропластов происходит восстановление нитрттов до аммиака за счёт энергии электронов, активированных светом; в растениях этот аммиак служит источником азота при синтезе аминокислот и нуклеотидов.

Геном пластид.

Подобно митохондриям, хлоропласты имеют собственную генетическую систему, обеспечивающую синтез ряда белков внутри самих пластид. В матриксе хлоропластов обнаруживаются ДНК, разные РНК и рибосомы. Оказалось, что ДНК хлоропластов резко отличается от ДНК ядра. Она представлена циклическими молекулами длиной до 40-60 мкм, имеющими молекулярный вес 0,8-1,3х108 дальтон. В одном хлоропласте может быть множество копий ДНК. Так, в индивидуальном хлоропласте кукурузы присутствует 20-40 копий молекул ДНК. Длительность цикла и скорость репликации ядерной и хлоропластной ДНК, как было показано на клетках зеленых водорослей, не совпадают. ДНК хлоропластов не состоит в комплексе с гистонами. Все эти характеристики ДНК хлоропластов близки к характеристикам ДНК прокариотических клеток. Более того, сходство ДНК хлоропластов и бактерий подкрепляется еще и тем, что основные регуляторные последовательности транскрипции (промоторы, терминаторы) у них одинаковы. На ДНК хлоропластов синтезируются все виды РНК (информационная, трансферная, рибосомная). ДНК хлоропластов кодирует рРНК, входящую в состав рибосом этих пластид, которые относятся к прокариотическому 70S типу (содержат 16S и 23S рРНК). Рибосомы хлоропластов чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.

Так же как в случае хлоропластов мы вновь сталкиваемся с существованием особой системы синтеза белка, отличной от таковой в клетке.

Эти открытия вновь пробудили интерес к теории симбиотического происхождения хлоропластов. Идея о том, что хлоропласты возникли за счет объединения клеток-гетеротрофов с прокариотическими синезелеными водорослями, высказанная на рубеже XIX и XX вв. (А.С. Фоминцин, К.С.Мережковский) вновь находит свое подтверждение. В пользу этой теории говорит удивительное сходство в строении хлоропластов и синезеленых водорослей, сходство с основными их функциональными особенностями, и в первую очередь со способностью к фотосинтетическим процессам.

Известны многочисленные факты истинного эндосимбиоза синезеленых водорослей с клетками низших растений и простейших, где они функционируют и снабжают клетку-хозяина продуктами фотосинтеза. Оказалось, что выделенные хлоропласты могут также отбираться некоторыми клетками и использоваться ими как эндосимбионты. У многих беспозвоночных (коловратки, моллюски), питающихся высшими водорослями, которые они переваривают, интактные хлоропласты оказываются внутри клеток пищеварительных желез. Так, у некоторых растительноядных моллюсков в клетках найдены интактные хлоропласты с функционирующими фотосинтетическими системами, за активностью которых следили по включению С14О2.

Как оказалось, хлоропласты могут быть введены в цитоплазму клеток культуры фибробластов мыши путем пиноцитоза. Однако они не подвергались атаке гидролаз. Такие клетки, включившие зеленые хлоропласты, могли делиться в течение пяти генераций, а хлоропласты при этом оставались интактными и проводили фотосинтетические реакции. Были предприняты попытки культивировать хлоропласты в искусственных средах: хлоропласты могли фотосинтезировать, в них шел синтез РНК, они оставались интактными 100 ч, у них даже в течение 24 ч наблюдались деления. Но затем происходило падение активности хлоропластов, и они погибали.

Эти наблюдения и целый ряд биохимических работ показали, что те черты автономии, которыми обладают хлоропласты, еще недостаточны для длительного поддержания их функций и тем более для их воспроизведения.

В последнее время удалось полностью расшифровать всю последовательность нуклеотидов в составе циклической молекулы ДНК хлоропластов высших растений. Эта ДНК может кодировать до 120 генов, среди них: гены 4 рибосомных РНК, 20 рибосомных белков хлоропластов, гены некоторых субъединиц РНК-полимеразы хлоропластов, несколько белков I и II фотосистем, 9 из 12 субъединиц АТФ-синтетазы, части белков комплексов цепи переноса электронов, одной из субъединиц рибулозодифосфат-карбоксилазы (ключевой фермент связывания СО2), 30 молекул тРНК и еще 40 пока неизвестных белков. Интересно, что сходный набор генов в ДНК хлоропластов обнаружен у таких далеко отстоящих представителей высших растений как табак и печеночный мох.

Основная же масса белков хлоропластов контролируется ядерным геномом. Оказалось, что ряд важнейших белков, ферментов, а соответственно и метаболические процессы хлоропластов находятся под генетическим контролем ядра. Так, клеточное ядро контролирует отдельные этапы синтеза хлорофилла, каротиноидов, липидов, крахмала. Под ядерным контролем находятся многие энзимы темновой стадии фотосинтеза и другие ферменты, в том числе некоторые компоненты цепи транспорта электронов. Ядерные гены кодируют ДНК-полимеразу и аминоацил-тРНК-синтетазу хлоропластов. Под контролем ядерных генов находится большая часть рибосомных белков. Все эти данные заставляют говорить о хлоропластах, так же как и о митохондриях, как о структурах с ограниченной автономией.

Транспорт белков из цитоплазмы в пластиды происходит в принципе сходно с таковым у митохондрий. Здесь также в местах сближения внешней и внутренней мембран хлоропласта располагаются каналообразующие интегральные белки, которые узнают сигнальные последовательности хлоропластных белков, синтезированных в цитоплазме, и транспортируют их в матрикс-строму. Из стромы импортируемые белки согласно дополнительным сигнальным последовательностям могут включаться в мембраны пластиды (тилакоиды, ламеллы стромы, внешняя и внутренняя мембраны) или локализоваться в строме, входя в состав рибосом, ферментных комплексов цикла Кальвина и др.

Удивительное сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов – с другой, служит веским аргументом в пользу теории симбиотического происхождения этих органелл. Согласно этой теории, возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотический генофор формируется в обособленное от цитоплазмы ядро. Так могли возникнуть гетеротрофные эукариотические клетки. Повторные эндосимбиотические взаимоотношения между первичными эукариотическими клетками и синезелеными водорослями привели к появлению в них структур типа хлоропластов, позволяющих клеткам осуществлять автосинтетические процессы и не зависеть от наличия органических субстратов. В процессе становления такой составной живой системы часть генетической информации митохондрий и пластид могла изменяться, перенестись в ядро. Так, например две трети из 60 рибосомных белков хлоропластов кодируется в ядре и синтезируются в цитоплазме, а потом встраивается в рибосомы хлоропластов, имеющие все свойства прокариотических рибосом. Такое перемещение большой части прокариотических генов в ядро привело к тому, что эти клеточные органеллы, сохранив часть былой автономии, попали под контроль клеточного ядра, определяющего в большей степени все главные клеточные функции.

 

Пропластиды.

При нормальном освещении пропластиды превращаются в хлоропласты. Сначала они растут, при этом происходит образование продольно расположенных мембранных складок от внутренней мембраны. Одни из них простираются по всей длине пластиды и формируют ламеллы стромы; другие образуют ламеллы тилакоидов, которые выстраиваются в виде стопки и образуют граны зрелых хлоропластов. Несколько иначе развитие пластид происходит в темноте. У этиолированных проростков происходит в начале увеличение объема пластид, этиопластов, но система внутренних мембран не строит ламеллярные структуры, а образует массу мелких пузырьков, которые скапливаютсяя в отдельные зоны и даже могут формировать сложные решетчатые структуры (проламеллярные тела). В мембранах этиопластов содержится протохлорофилл, предшественник хлорофилла желтого цвета. Под действие света из этиопластов образуются хлоропласты, протохлорофилл превращается в хлорофилл, происходит синтез новых мембран, фотосинтетических ферментов и компонентов цепи переноса электронов.

При освещении клеток мембранные пузырьки и трубочки быстро реорганизуются, из них развивается полная система ламелл и тилакоидов, характерная для нормального хлоропласта.

Лейкопласты отличаются от хлоропластов отсутствием развитой ламеллярной системы. Встречаются они в клетках запасающих тканей. Из-за их неопределенной морфологии лейкопласты трудно отличить от пропластид, а иногда и от митохондрий. Они, как и пропластиды, бедны ламеллами, но тем не менее способны к образованию под влиянием света нормальных тилакоидных структур и к приобретению зеленой окраски. В темноте лейкопласты могут накапливать в проламеллярных телах различные запасные вещества, а в строме лейкопластов откладываются зерна вторичного крахмала. Если в хлоропластах происходит отложение так называемого транзиторного крахмала, который присутствует здесь лишь во время ассимиляции СО2, то в лейкопластах может происходить истинное запасание крахмала. В некоторых тканях (эндосперм злаков, корневища и клубни) накопление крахмала в лейкопластах приводит к образованию амилопластов, сплошь заполненных гранулами запасного крахмала, расположенных в строме пластиды.

Другой формой пластид у высших растений является хромопласт, окрашивающийся обычно в желтый свет в результате накопления в нем каротиноидов. Хромопласты образуются из хлоропластов и значительно реже их лейкопластов (например, в корне моркови). Процесс обесцвечивания и изменения хлоропластов легко наблюдать при развитии лепестков или при созревании плодов. При этом в пластидах могут накапливаться окрашенные в желтый цвет капельки (глобулы) или в них появляются тела в форме кристаллов. Эти процессы сопряжены с постепенным уменьшением числа мембран в пластиде, с исчезновением хлорофилла и крахмала. Процесс образования окрашенных глобул объясняется тем, что при разрушении ламелл хлоропластов выделяются липидные капли, в которых хорошо растворяются различные пигменты (например, каротиноиды). Таким образом, хромопласты представляют собой дегенерирующие формы пластид, подвернутые липофанерозу – распаду липопротедных комплексов.


Заключение.

Пластиды. Пластиды – особые органоиды растительных клеток, в которых

осуществляется синтез различных веществ, и в первую очередь фотосинтез.

В цитоплазме клеток высших растений имеется три основных типа пластид:

1) зеленые пластиды – хлоропласты; 2) окрашенные в красный, оранжевый и

другие цвета хромопласты; 3) бесцветные пластиды – лейкопласты. Все эти типы пластид могут переходить один в другой. У низших растений, например у водорослей, известен один тип пластид – хроматофоры. Процесс фотосинтеза у

высших растений протекает в хлоропластах, которые, как правило, развиваются только на свету.

Снаружи хлоропласты ограничены двумя мембранами: наружной и внутренней. В состав хлоропластов высших растений, по данным электронной микроскопии, входит большое количество гран, расположенных группами. Каждая

грана состоит из многочисленных круглых пластин, имеющих форму плоских мешочков, образованных двойной мембраной и сложенных друг с другом наподобие столбика монет. Граны соединяются между собой посредством особых пластин или трубочек, расположенных в строме хлоропласта и образующих

единую систему. Зеленый пигмент хлоропластов содержат только граны; строма их бесцветна.

Хлоропласты одних растений содержат лишь несколько гран, других – до пятидесяти и больше.

У зеленых водорослей процессы фотосинтеза осуществляются в хроматофорах, которые не содержат гран, и продукты первичного синтеза –различные углеводы – часто откладываются вокруг особых клеточных структур, называемых пиреноидами.

Окраска хлоропластов зависит не только от хлорофилла, в них могут содержаться и другие пигменты, например каротин и каротиноиды, окрашенные в разные цвета – от желтого до красного и коричневого, а также фикобилины. К последним относится фикоцианин и фикоэритрин красных и сине-зеленых водорослей.Пластиды развиваются из особых клеточных структур, носящих название пропластид. Пропластиды – это бесцветные образования, внешне похожие на митохондрии, но отличающиеся от них более крупными размерами и тем, что всегда имеют удлиненную форму. Снаружи пластиды ограничены двойной мембраной, небольшое количество мембран находится также в их внутренней части. Пластиды размножаются путем деления, и контроль над этим процессом осуществляется, по-видимому, ДНК, содержащейся в них же. При делении происходит перетяжка пластиды, но разделение пластид может происходить и путем образования перегородки. Способность пластид к делению обеспечивает их непрерывность в ряду клеточных поколений. При половом и бесполом размножении растений происходит передача пластид дочерним организмам.

Подобно митохондриям, хлоропласты имеют собственную генетическую систему, обеспечивающую синтез ряда белков внутри самих пластид. В матриксе хлоропластов обнаруживаются ДНК, разные РНК и рибосомы. ДНК хлоропластов резко отличается от ДНК ядра.


Литература.

1) Ю.С.Ченцов. Введение в клеточную биологию./Ю.С. Ченцов.-М.:ИКЦ «Академкнига»,2005-495с.:ил.

2) Физиология растений: Учебник для студ.вузов/ Н.Д.Алёхина, Ю.В.Балнокин, В.Ф. Гавриленко, Т.В.Жигалова, Н.Р. Мейчик, А.М.Носов, О.Г.Полесская, Е.В.харитонашвили; Под ред. И.П.Ермакова.-М.:изд.центр «Академия»,2005.-640с.





© 2010 Интернет База Рефератов