реферат
Главная

Рефераты по сексологии

Рефераты по информатике программированию

Рефераты по биологии

Рефераты по экономике

Рефераты по москвоведению

Рефераты по экологии

Краткое содержание произведений

Рефераты по физкультуре и спорту

Топики по английскому языку

Рефераты по математике

Рефераты по музыке

Остальные рефераты

Рефераты по авиации и космонавтике

Рефераты по административному праву

Рефераты по безопасности жизнедеятельности

Рефераты по арбитражному процессу

Рефераты по архитектуре

Рефераты по астрономии

Рефераты по банковскому делу

Рефераты по биржевому делу

Рефераты по ботанике и сельскому хозяйству

Рефераты по бухгалтерскому учету и аудиту

Рефераты по валютным отношениям

Рефераты по ветеринарии

Рефераты для военной кафедры

Рефераты по географии

Рефераты по геодезии

Рефераты по геологии

Рефераты по геополитике

Рефераты по государству и праву

Рефераты по гражданскому праву и процессу

Рефераты по делопроизводству

Рефераты по кредитованию

Рефераты по естествознанию

Рефераты по истории техники

Рефераты по журналистике

Рефераты по зоологии

Рефераты по инвестициям

Рефераты по информатике

Исторические личности

Рефераты по кибернетике

Рефераты по коммуникации и связи

Курсовая работа: Абстрактный синтез конечного автомата

Курсовая работа: Абстрактный синтез конечного автомата

СОДЕРЖАНИЕ

Введение

1. Абстрактный синтез конечного автомата

1.1 Формирование алфавитного оператора

1.2 Приведение оператора к автоматному виду

1.3 Построение графа переходов абстрактного автомата

1.4 Минимизация абстрактного автомата

2. Структурный синтез конечного автомата

2.1 Кодирование состояний, входных и выходных сигналов

2.2 Формирование функций возбуждения и выходных сигналов структурного автомата

Заключение

Список литературы


ВВЕДЕНИЕ

Теория автоматов – это теория, на которой основаны экспериментальные методы исследования в кибернетике. При подходе к теории автоматов, как к части теории алгоритмов, центральной проблемой является изучение возможностей автоматов в терминах множеств слов, с которыми работают автоматы.

Можно выделить два основных аспекта работы автомата.

1.                Автоматы-распознаватели, которые распознают входные слова, т.е. отвечают на вопрос, принадлежит ли поданное на вход слово данному множеству.

2.                Автоматы-преобразователи, которые преобразуют входные слова в выходные, т.е. реализуют автоматные отображения.

Одной из задач теории автоматов является задача описания автомата и его реализации, т.е. представления автомата как структуры, состоящей из объектов фиксированной сложности. В этом отношении теория автоматов оказалось наиболее развитой ветвью теории алгоритмов.

Общая теория автоматов подразделяется на абстрактную теорию и структурную теорию автоматов. Абстрактная теория автоматов занимает промежуточное положение между алгеброй и логикой. С точки зрения приложений значение абстрактной теории автоматов отнюдь не сводится к удовлетворению запросов одной лишь вычислительной техники. Современная теория автоматов представляет собой математический аппарат для решения широкого класса комбинаторных проблем.

Структурная теория автоматов позволяет реализовать абстрактный автомат на элементах, принадлежащих к заранее заданному классу.

Для преобразования дискретной информации в различных областях техники используются цифровые автоматы. К цифровым автоматам относятся отдельные узлы и блоки специализированных и универсальных ЦВМ и ЦВМ в целом. Цифровыми автоматами могут быть названы также устройства, в автоматике, телемеханике, радиолокации и других областях техники, в которых требуется выполнять преобразование над сигналами, представленные в дискретной (цифровой) форме.

Первое правило функционирования автоматов заключается в следующем. Автомат необязательно должен запоминать входные истории. Вполне достаточно, чтобы автомат запомнил класс эквивалентностей, к которому приходится данная история.

Второе правило функционирования автоматов состоит в том, что на один и тот же входной сигнал конечный автомат может реагировать по-разному, в зависимости от того, в каком состоянии он находится в настоящий момент.

Конечный автомат - это устройство, работающее в дискретные моменты времени, или такты. На вход конечного автомата в каждом такте поступает один из возможных входных сигналов, а на его выходе появляется выходной сигнал, являющийся функцией его текущего состояния и поступившего входного сигнала.

Внутренние состояния автомата также меняются. Моменты срабатывания (такты), определяются либо принудительно тактирующими синхросигналами, либо асинхронно, наступлением внешнего события, то есть приходом сигнала.

Существует два вида реализации конечного автомата - аппаратная и программная. В первую очередь, реализация конечного автомата требует построения устройства памяти для запоминания текущего состояния автомата. Обычно используются двоичные элементы памяти, или триггеры, запоминающие значение одного двоичного разряда.


1. АБСТРАКТНЫЙ СИНТЕЗ КОНЕЧНОГО АВТОМАТА

1.1 Формирование алфавитного оператора

Для определения параметров задания необходимо ввести первичную информацию:

- порядковый номер в журнале;

- год поступления;

- номер группы;

Для данного задания это соответственно:

21, 08, 02.

Из этих цифр необходимо составить правильную десятичную дробь, в которой эти цифры следуют сразу после запятой:

 Y1= 0,210802

Вторичная информация Y,Y3 ,Y4 получаются путем возведения 1 в степени 2, 3, 4 и удалением в дроби всех нулей между запятой и первой значимой цифрой.

Y2 = 0,444374

Y3 = 0,93675

Y4 = 0,19747

Для получения значений входных и выходных сигналов автомата необходимо полученные десятичные дроби преобразовать в двоичный код до шестнадцатого знака.

В результате преобразований получены следующие значения заданных сигналов.

Y1 = 0011010111110111

Y2 = 0111000111000010

Y3 = 1110111111001110

Y4 = 0011001010001101

Полученные значения записываются в столбцах: первые 8 значений в левой части, вторые 8 – в правой части. Алфавитный оператор соответствия представлен в таблице 1.

Таблица 1. Алфавитный оператор соответствия

Входные сигналы Выходные сигналы
0010 1111
0110 1110
1111 1000
1101 1000
0010 0011
1010 1011
0011 1110
1110 1001

1.2 Приведение оператора к автоматному виду

Для того чтобы оператор преобразовался к автоматному виду, необходимо выполнение трех условий:

1. Любым двум одинаковым начальным отрезкам входных слов должны соответствовать одинаковые начальные отрезки выходных слов;

2. Длина входного слова должна равняться длине выходного слова;

3. Последний символ должен возвращать автомат в начальное состояние.

Данный оператор уже выровнен, так как длина каждого из входных слов равна длине соответствующего выходного слова. Каждому входному слову здесь сопоставляются не более одного выходного слова, поэтому оператор однозначен. Однако он не удовлетворяет условию полноты.

Таким образом, автоматный вид оператора примет, следующий вид:

Таблица 2. Автоматный вид

Входные сигналы Выходные сигналы
0010 1111
0110 1110
1111 1000
1101 1000
00100000 11110011
1010 1011
0011 1110
1110 1001

1.3 Построение графа переходов абстрактного автомата

Построим по таблице 2 граф переходов автомата. При этом предполагается, что последний символ каждого входного слова должен переводит автомат в начальное состояние.

Граф переходов абстрактного автомата представлен в приложении 1.

1.4 Минимизация абстрактного автомата

По графу переходов построим таблицу переходов-выходов заданного автомата (таблица 3).

Таблица 3. Таблица переходов-выходов автомата

a(t-1) 0 1

a0

a1/1

a2/1

a1

a3/1

a4/1

a2

a10/0

a11/0

a3

-

a5/1

a4

-

a6/1

a5

a8/1

a9/0

a6

a8/0

-

a7

a0/-

a0/-

a8

a0/-

a0/-

a9

a0/-

a0/-

a10

-

a12/1

a11

a14/0

a15/0

a12

a13/1

-

a13

a0/-

a0/-

a14

-

a16/0

a15

a17/1

a18/0

a16

a0/-

a0/-

a17

a0/-

a0/-

a18

a0/-

a0/-

Один из алгоритмов минимизации полностью определенных автоматов заключается в следующем. Множество состояний исходного абстрактного автомата разбивается на попарно пересекающиеся классы эквивалентных состояний, далее каждый класс эквивалентности заменяется одним состоянием. В результате получается минимальный автомат, имеющий столько же состояний, на сколько классов эквивалентности разбиваются исходные состояния автомата.

0 класс эквивалентности:

a0, a1

b0

a2, a11

b1

a14

b2

a3, a4, a10

b3

a5, a15

b4

a6

b5

a7, a8, a9, a13, a16, a17, a18

b6

a12

b7

1 класс эквивалентности:

a0

c0

a1

c1

a2

c2

a3

c3

a4

c4

a5, a15

c5

a6

c6

a10

c7

a11

c8

a12

c9

a14

c10

a7, a8, a9, a13, a16, a17, a18

c11

2 класс эквивалентности:

a0

d0

a1

d1

a2

d2

a3

d3

a4

d4

a5, a15

d5

a6

d6

a10

d7

a11

d8

a12

d9

a14

d10

a7, a8, a9, a13, a16, a17, a18

d11

Из разбиения видно, что классы 1 и 2 совпадают, значит, продолжать не имеет смысла.

Таблица переходов-выходов минимизированного автомата представлена в таблице 4:

Таблица 4. Таблица переходов-выходов минимизированного автомата

d(t-1) 0 1

d0

d1/1

d2/1

d1

d3/1

d4/1

d2

d7/0

d8/0

d3

-

d5/1

d4

-

d6/1

d5

d11/1

d11/0

d6

d11/0

-

d7

-

d9/1

d8

d10/0

d5/0

d9

d11/1

-

d10

-

d11/0

d11

d0/-

d0/-

Граф переходов минимизированного автомата представлен в приложении 2.


2. СТРУКТУРНЫЙ СИНТЕЗ КОНЕЧНОГО АВТОМАТА

2.1 Кодирование состояний, входных и выходных сигналов

Для кодирования состояний, входных и выходных сигналов конечного автомата, необходимо вычислить число элементов памяти:

а) рассчитаем число элементов памяти: Н = ] log2h [, где h - число состояний после минимизации D = {}

H = ] log2 12 [ = 4

б) рассчитаем число входных (L) и выходных (М) шин:
L = ] log2n[

М =] log2m [,

где n, m - число букв входного и выходного алфавитов

Z = {0, 1} L = ] log2 2 [ = 1

W = {0, 1} M = ] log2 2 [ = 1

Из приведённого выше следует, что для кодирования состояний необходимо 4 элемента памяти, обозначим их Q0, …, Q3. Закодируем состояния (таблица 5) случайными кодами.

Таблица 5. Таблица кодированных состояний

d(t-1)

Q0

Q1

Q2

Q3

d0

0 0 0 0

d1

0 0 0 1

d2

0 0 1 0

d3

0 0 1 1

d4

0 1 0 0

d5

0 1 0 1

d6

0 1 1 0

d7

0 1 1 1

d8

1 0 0 0

d9

1 0 0 1

d10

1 0 1 0

d11

1 0 1 1

2.2 Формирование функций возбуждения и выходных сигналов структурного автомата

По минимизированному графу переходов абстрактного автомата (Приложение 2) можно составить таблицу переходов, выходных сигналов и сигналов возбуждения D-триггеров автомата Мили (таблица 6), Т-триггеров автомата Мили (таблица 7), RS-триггеров (таблица 8), JK-триггеров (таблица 9).

D-триггер элемент задержки – имеет один информационный вход D и один выход Q и осуществляет задержку поступившего на его вход сигнала на один такт. Состояние, в которое переходит триггер, совпадает с поступившим на его вход сигналом D(t).

Таблица 6. Таблица переходов, выходных сигналов и сигналов возбуждения D-триггеров

Номер перехода Исходное состояние Код исходного состояния Следующее состояние Код следующего состояния Входной набор Выходные сигналы Сигналы возбуждения
0 1

D3

D2

D1

D0

1

d0

0000

d1

d2

0001

0010

0

1

d00

d01

d01

d00

2

d1

0001

d3

d4

0011

0100

0

1

d10

d11

d11

d10

d10

3

d2

0010

d7

d8

0111

1000

0

1

d20

d21

d21

d20

d20

d20

4

d3

0011

d5

0101 1

d31

d31

d31

5

d4

0100

d6

0110 1

d41

d41

d41

6

d5

0101

d11

1011 0Ú1

d50

d51

d50Ú

d51

d50

Ú

d51

d50

Ú
d51

7

d6

0110

d11

1011 0

d60

d60

d60

d60

8

d7

0111

d9

1001 1

d71

d71

d71

9

d8

1000

d10

d5

1010

0101

0

1

d80

d81

d80

d81

d80

d81

10

d9

1001

d11

1011 0

d90

d90

d90

d90

11

d10

1010

d11

1011 1

d101

d101

d101

d101

12

d11

1011

d0

0000 - - - - - - -

Из таблицы следует, что выходные сигналы автомата Мили описываются следующими выражениями:

= d20 Úd21 Úd50 Úd60 Úd80 Úd81 Úd101= d2 Úd50 Úd60 Úd8 Úd101

= d00 Úd01 Úd10 Úd11 Úd31 Úd41 Úd51 Úd71 Úd90= d0 Úd1 Úd31 Úd41 Úd51 Úd71 Úd90

Также следует, что сигналы возбуждения D-триггеров автомата Мили описываются следующими выражениями:

D3 = d21 Úd50 Úd51 Úd60 Úd71 Úd80 Úd90 Úd101= d21 Úd5 Úd60 Úd71 Úd80 Úd90 Úd101

D2 = d11 Úd20 Úd31 Úd41 Úd81

D1 = d01 Úd10 Úd20 Úd41 Úd50 Úd51 Úd60 Úd80 Úd90 Úd101=

 =d01 Úd10 Úd20 Úd41 Ú d5Ú d60 Úd80 Úd90 Úd101

D0 = d00 Úd10 Úd20 Úd31 Úd50 Úd51 Úd60 Úd71 Úd81 Úd90 Úd101=

 =d00 Úd10 Úd20 Úd31 Úd5 Úd60 Úd71 Úd81 Úd90 Úd101

 Функциональная схема автомата Мили на D-триггерах, построенная по выражениям, описывающим выходные сигналы, приведена в Приложении 3.


Таблица 7. Таблица переходов, выходных сигналов и сигналов возбуждения T-триггеров

Номер перехода Исходное состояние Код исходного состояния Следующее состояние Код следующего состояния Входной набор Выходные сигналы Сигналы возбуждения
0 1

T3

T2

T1

T0

1

d0

0000

d1

d2

0001

0010

0

1

d00

d01

d01

d00

2

d1

0001

d3

d4

0011

0100

0

1

d10

d11

d11

d10

d11

3

d2

0010

d7

d8

0111

1000

0

1

d20

d21

d21

d20

d21

d20

4

d3

0011

d5

0101 1

d31

d31

d31

5

d4

0100

d6

0110 1

d41

d41

6

d5

0101

d11

1011 0Ú1

d50

d51

d50

Ú

d51

d50

Ú

d51

d50

Ú

d51

7

d6

0110

d11

1011 0

d60

d60

d60

d60

8

d7

0111

d9

1001 1

d71

d71

d71

d71

9

d8

1000

d10

d5

1010

0101

0

1

d80

d81

d81

d81

d80

d81

10

d9

1001

d11

1011 0

d90

d90

11

d10

1010

d11

1011 1

d101

d101

12

d11

1011

d0

0000 - - - - - - -

Из таблицы следует, что сигналы возбуждения T-триггеров автомата Мили описываются следующими выражениями:

T3 = d21 Úd50 Úd51 Úd60 Úd71 Úd81= d21 Ú d5 Úd60 Úd71 Úd81

T2 = d11 Úd20 Úd31 Úd50 Úd51 Úd60 Úd71 Úd81= d11 Úd20 Úd31 Úd5 Úd60 Úd71 Úd81

T1 = d01 Úd10 Úd21 Úd31 Úd41 Úd50 Úd51 Úd71 Úd80 Úd90= d01 Úd10 Úd21 Úd31 Úd41 Úd5 Úd71 Úd80 Úd90

T0 = d00 Úd20 Úd60 Úd81 Úd101


Функциональная схема автомата Мили на T-триггерах, построенная по выражениям, описывающим выходные сигналы, приведена в Приложении 4.

Таблица 8. Таблица переходов и сигналов возбуждения RS-триггеров

Номер перехода Сигналы возбуждения

R3

S3

R2

S2

R1

S1

R0

S0

1

d01

d00

2

d11

d10

d11

3

d21

d20

d21

d20

4

d31

d31

5

d41

6

d50

Ú

d51

d50

Ú

d51

d50

Ú

d51

7

d60

d60

d60

8

d71

d71

d71

9

d81

d81

d80

d81

10

d90

11

d101

12 - - - - - -

-

-

Из таблицы следует, что сигналы возбуждения RS-триггеров автомата Мили описываются следующими выражениями:

R3 = d81

S3 = d21 Úd50 Úd51 Úd60 Úd71 Úd90= d21 Úd5 Úd60 Úd71 Úd90

R2 = d50 Úd51 Úd60 Úd71= d5 Úd60 Úd71

S2 = d11 Úd20 Úd31 Úd81

R1 = d21 Úd31 Úd71

S1 = d01 Úd10 Úd41 Úd50 Úd51 Úd80= d01 Úd10 Úd41 Úd5 Úd80

R0 = d11

S0 = d00 Úd20 Úd60 Úd81 Úd101

Функциональная схема автомата Мили на RS-триггерах, построенная по выражениям, описывающим выходные сигналы, приведена в Приложении 5.

Таблица 9. Таблица переходов и сигналов возбуждения JK-триггеров

Номер перехода Сигналы возбуждения

J3

K3

J2

K2

J1

K1

J0

K0

1

d01

d00

2

d11

d10

d11

3

d21

d20

d21

d20

4

d31

d31

5

d41

6

d50

Ú

d51

d50

Ú

d51

d50

Ú

d51

7

d60

d60

d60

8

d71

d71

d71

9

d81

d81

d80

d81

10

d90

11

d101

12 - - - - - - -

-

Из таблицы следует, что сигналы возбуждения RS-триггеров автомата Мили описываются следующими выражениями:

J3 = d21 Úd50 Úd51 Úd60 Úd71 Úd90= d21 Úd5 Úd60 Úd71 Úd90

K3 = d81

J2 = d11 Úd20 Úd31 Úd81

K2 = d50 Úd51 Úd60 Úd71= d5 Úd60 Úd71

J1 = d01 Úd10 Úd41 Úd50 Úd51 Úd80= d01 Úd10 Úd41 Úd5 Úd80

K1 = d21 d31 d71

J0 = d00 Úd20 Úd60 Úd81 Úd101

K0 = d11

Функциональная схема автомата Мили на JK-триггерах, построенная по выражениям, описывающим выходные сигналы, приведена в Приложении 6.


ЗАКЛЮЧЕНИЕ

В процессе выполнения работы мной были закреплены знания о синтезе конечных автоматов и получена практика в построении комбинационных схем.

В данной работе мной было выполнено проектирование конечного автомата по алфавитному отображению с использованием канонического метода структурного синтеза автоматов. Построены граф переходов абстрактного автомата с 17 состояниями и таблицы переходов-выходов. Минимизация состояний автомата выполнена путем разбиения на группы эквивалентных между собой состояний. После чего был построен минимальный граф Мили с 11 состояниями. Выполнен структурный синтез конечного автомата. Построены функциональные схемы автомата Мили на D, T, RS и JK-триггерах.


СПИСОК ЛИТЕРАТУРЫ

1.                 Баранов С.И. Синтез микропрограммных автоматов (граф-схемы и автоматы). 2-е изд., перераб. и доп. – Л.: Энергия, 1979. – 232 с., ил.

2.                 Дегтярев В.М., Ерош И.Л., Михайлов В.В. Проектирование цифровых автоматов.-Л.:ЛИАП, 1974г.

3.                 Козин И.В., Иванов Н.М., Лупал А.М. Проектирование управляющих автоматов по алфавитному отображению. Учебное пособие по курсовому проектированию/ЛИАП. – Л., 1991. – 82 с., ил.

4.                 Лупал А.М. Теория автоматов. Учебное пособие/СПбГУАП. – СПб., 2000. – 120 с., ил.

5.                 Лысиков Б.Г. Арифметические и логические основы цифровых автоматов. Учебник для вузов по спец. «Электронные вычислительные машины». – 2-е изд., перераб. и доп. – Мн.: Выш. школа, 1980. – 336 с., ил.

6.                 Конспект лекций по дисциплине «Теория автоматов», преподаватель Глебов Е.А., 2005-2006 уч.г.





© 2010 Интернет База Рефератов