Главная Рефераты по сексологии Рефераты по информатике программированию Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии Рефераты по геополитике Рефераты по государству и праву Рефераты по гражданскому праву и процессу Рефераты по делопроизводству Рефераты по кредитованию Рефераты по естествознанию Рефераты по истории техники Рефераты по журналистике Рефераты по зоологии Рефераты по инвестициям Рефераты по информатике Исторические личности Рефераты по кибернетике Рефераты по коммуникации и связи |
Реферат: Когерентное накопление сигналаРеферат: Когерентное накопление сигналаБЕЛОРУССКИЙ ГОСУДРАСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра ЭТТ РЕФЕРАТ На тему: «Когерентное накопление сигнала» МИНСК, 2008 Сущность и принципы когерентного накопления сигнала
Последовательность принятых одиночных полезных сигналов после внутрипериодной обработки и когерентной компенсации мешающих отражений сохраняет междупериодную корреляцию и гребенчатую структуру энергетического спектра. Эти свойства сигнала определяют возможность его выделения на фоне шумов и некоррелированных (обеленных) мешающих отражений, у которых отсутствует междупериодная корреляция, а энергетический спектр является равномерным. Очевидно, что при таких различиях корреляционных и спектральных характеристик сигнала и шума, оптимальной процедурой обработки сигнала с целью его выделения на фоне шума является когерентное накопление (сложение, интегрирование) сигнала на всем интервале наблюдения (времен ной язык) или согласованная фильтрация сигнала (спектральный язык), При когерентном накоплении сигнала выполняются следующие операции: - коррекция доплеровского набега фазы сигнала за период повторения , - совмещение во времени одиночных сигналов, - синфазное (когерентное) сложение N сигналов на всем интервале наблюдения. Векторная интерпретация механизма когерентного накопления сигнала показана на рис. 1. Алгоритм когерентного накопления сигнала с заключительной операцией детектирования записывается выражением , где - смесь сигнала и шума. Согласованная фильтрация сигнала означает; - во-первых, формирование гребенчатой АЧХ фильтра, аналогичной гребенчатому энергетическому спектру сигнала, что эквивалентно использованию инструмента, настроенного на совокупность коррелированных одиночных сигналов; - во-вторых, совмещен не зубцов АЧХ фильтра с зубцами АЧС сиг нала, что эквивалентно коррекции доплеровского смещения частоты сигнала или коррекции доплеровского набега фазы сигнала за период повторения; Рис. 1. Векторная интерпретация механизма когерентного накопления сигнала. Рис. 2. Спектральная интерпретация когерентного накопления сигнала, как согласованной фильтрации. - в-третьих, согласование ширины зубцов АЧХ фильтра с шириной зубцов АЧС сигнала, что эквивалентно согласованию времени когерентного накопления сигнала с временем его наблюдения. Спектральная интерпретация когерентного накопления сигнала, как согласованной фильтрации, показана на рис. 2. Корреляционный способ когерентного накопления сигнала
Корреляционный способ когерентного накопления сигнала предполагает перемножение опорного сигнала и входного сигнала, состоящего из полезного сигнала и шумов, а также последующее временное интегрирование. Опорный сигнал является последовательностью одиночных сигналов (как и принятый сигнал), задержанных по времени и смещенных по частоте относительно зондирующего сигнала. При перемножении полезного и опорного сигналов происходит демодуляция (сжатие по спектру) сигнала, т.е. образуется последовательность демодулированных одиночных сигналов, длительность которых определяется длительностью зондирующих сигналов. Внутрипериодное и междупериодное интегрирование могут осуществляться как раздельно с помощью фильтра грубой селекции (ФГС) с внутрипериодной памятью и узкополосного фильтра точной селекции (ФТС) с междупериодной памятью, так и одновременно с помощью единого радиоинтегратора с междупериодной памятью. Корреляционная схема когерентного накопления сигнала на радиочастоте показана на рис. 3. Роль радиоинтегратора о междупериодной памятью выполняет узкополосные фильтр (ФТС) с использованием колебательного контура (рис. 4). Квадрат АЧХ этого фильтра определяется выражением (рис. 5) , где - резонансная частота фильтра, - постоянная времени фильтра, - добротность фильтра.
Рис. 3. Корреляционная схема когерентного накопления сигнала. Рис. 4. Узкополосный фильтр точной селекции радиоинтегратор. Рис. 5. Амплитудно-частотная характеристика узкополосного фильтра. Чтобы обеспечить узкую полосу пропускания фильтра ( десятки-сотни Герц) используют в качестве колебательного контура фильтра кварцевые резонаторы с добротностью . Кроме изложенной временной интерпретации процесса когерентного накопления сигнала в схеме с корреляционной обработкой, существует спектральная интерпретация этого процесса. Суть ее состоит в следующем. Частотная характеристика корреляционной схемы обработки формируется с участием, во-первых, опорного сигнала, а во-вторых, частотных характеристик фильтров, стоящих после перемножителя. Огибающая частотной характеристики устройства корреляционной обработки определяется спектром одиночных опорных сигналов. Гребенчатая структура частотной характеристики устройства корреляционной обработки определяется периодичностью опорного сигнала; частотная характеристика становится результатом размножения по частоте, с учетом ограниченного времени наблюдения, частотной характеристики фильтра коррелятора (фактически узкополосного фильтре) с интервалом размножения, равным частоте повторения одиночных опорных сигналов. В результате частотная характеристика корреляционной схемы когерентного накопления сигнала оказывается гребенчатой, причем ширина зубцов АЧХ, определяющая время когерентного накопления, равна (рис. 2): , . Это означает, что при наличии узкополосного фильтра когерентное накопление осуществляется практически на всем интервале наблюдения ( ). Для того чтобы зубцы АЧХ когерентного накопителя были совмещены с зубцами амплитудно-частотного (энергетического) спектра сигнала, необходимо выполнение условия т.е. частота коррекции опорного сигнала должна равняться доплеровскому смещению частоты принятого сигнала. Рис. 6. Эпюры напряжений в корреляционной схеме когерентного накопления сигнала. В ряде случаев полезна следующая дополнительная специальная интерпретация процесса когерентного накопления сигнала. На выходе фильтра грубой селекции с внутрипериодной памятью формируется последовательность демодулированных "аналитически продолженных" на период повторения одиночных сиг налов, спектр которой (последовательности) представляется одним зубцом (не является гребенчатым) с шириной , , которая в основном определяется величиной, обратной времени наблюдения. Частотная характеристика накопителя-радиоинтегратора, роль которого выполняет узкополосный фильтр точной селекции, с уче том ограниченной продолжительности последовательности одиночных опорных сигналов, равной времени наблюдения , имеет ширину , . которая, в основном, также определяется величиной, обратной времени наблюдения (рис. 7). Таким образом, обеспечивается согласованная по полосе частот фильтрация полезного сигнала (), т.е. согласование времени когерент ного накопления с интервалом когерентности сигнала () . Аналогичная по принципам построения, функционированию и характеристикам корреляционная схема когерентного накопления сигнала на видеочастоте с двумя квадратурными каналами показана на рис. 8. Здесь в качестве перемножителей корреляторов используются фазовые детекторы, в качестве фильтров грубой селекции - фильтры низких частот, а в качестве узкополосных фильтров - интегрирующие цепи (рис. 9). Фильтровой способ когерентного накопления сигнала В основе построения фильтровых схем когерентного накопления. сигнала, обладающих свойством инвариантности ко времени запаздывания, лежат следующие соображения. С использованием одной или нескольких линий задержки на период повторения можно совместить во времени одиночные сигналы нескольких периодов повторения. Рис. 7. Дополнительная спектральная интерпретация процесса когерентного накопления сигнала. Рис. 8. Корреляционная схема когерентного накопления сигнала на видеочастоте с двумя квадратурными каналами. Поскольку сигналы характеризуются сильной междупериодной корреляцией, операция череспериодного суммирования, которая является дискретным аналогом временного интегрирования, должна при водить к когерентному (синфазному) накоплению сигналов во всех элементах разрешения по времени запаздывания (дальности) при условии компенсации доплеровского смешения частоты сигнала или коррекции доплеровского набега фазы сигнала за период повторения. При этом, очевидно, что амплитуда когерентного накопленного сигнала увеличивается пропорционально числу когерентно сложенных сиг налов. Два варианта фильтровых схем когерентного накопления сиг нала на радиочастоте, в которых выполняются все перечисленные преобразования, необходимые для когерентного накопления сигнала, показаны на рис. 10 и рис. 1. В первом варианте (рис. 10) используется многоотводная линия задержки, число звеньев задержки в которой (каждое звено - на период повторения ) на единицу меньше числа когерентно суммируемых одиночных сигналов N. Во втором варианте (рис. 11) используется рециркулятор-череспериодный сумматор с положительной задержанной (на период повторения) обратной связью. Коэффициент положительной задержанной обратной связи m определяет эффективное число когерентно суммируемых по закону геометрической прогрессии одиночных сигналов : , откуда . Квадрат АЧХ устройства когерентного накопления сигнала, выполненного по первому варианту согласно схеме на рис. 10, определяется выражением (рис. 12): откуда следует ширина зубцов АЧХ когерентного накопителя, обратно пропорциональная времени когерентного накопления . Рис. 9. Узкополосный фильтр (интегрирующая цепь) на видеочастоте. Рис. 10. Фильтровая схема когерентного накопления сигнала на многозвенной линии задержки. Рис. 11. Фильтровая схема когерентного накопления сигнала на рециркуляторе. Рис. 12. АЧХ устройства когерентного накопления сигнала, показанного на рис. 10. Рис. 13. АЧХ устройства когерентного накопления сигнала, показанного на рис. 11. Квадрат АЧХ устройства когерентного накопления сигнала, выполненного по второму варианту согласно схеме на рис. 11, определяет ся выражением (рис. 13) , откуда следует ширина зубцов АЧХ когерентного накопителя , Это означает, что для когерентного накопления одиночных сигналов на интервале коэффициент задержанной обратной связи рециркулятора должен быть равен: . Достоинством накопителя на рециркуляторе (рис. 11.) по сравнению с накопителем на многозвенной линии задержки (рис. 10) является использование единственной широкополосной линии задержки на период повторения (с полосой пропускания не меньше ширины спектра сигнала ). Недостатком этой схемы является проблема ее устойчивости при коэффициенте задержанной обратной связи, близком к единице ( ), из-за чего эффективное число когерентно накапливаемых сигналов оказывается ограниченным. . Аналогичные по принципам построения, функционированию и характеристикам фильтровые схемы когерентных накопителей могут быть выполнены на видеочастоте (с двумя квадратурными каналами). Техническая реализация устройств череспериодного суммирования на видеочастоте возможна с использованием не только линии задержки на период повторения, но и интегрирующих потенциалоскопов. Эффективность и характеристики обнаружения когерентного накопления сигнала Когерентное накопление является линейной операцией обработки сигналов. Поэтому критерием эффективности когерентного накопления может служить выигрыш в отношении сигнал/шум, обеспечиваемый накопителем. Для сравнения полезно указать, что рассмотренные ранее виды обработки (корреляционная и фильтровая обработка одиночных сигналов известном формы, компенсация мешающих отражений) также относились к классу линейных операций и характеризовались отношением сигнал/помеха на выходе. Удобным методом анализа эффективности когерентных накопителей является спектральный анализ с использованием междупериодного энергетического спектра сигнала и частотных характеристик когерентных накопителей независимо от способа их технической реализации (корреляционного или фильтрового). Пусть зубцы гребенчатого энергетического спектра последовательности сигналов и зубцы гребенчатой АЧХ накопителя имеют прямоугольную форму (рис. 14), что значительно упрощает анализ, не влияя на его результаты. В случае, представляющем наибольший практический интерес, когда , мощность сигнала на выходе (с учетом нормированной АЧХ) не изменяется, Рис. 14. Пояснение эффективности когерентного накопления. а мощность шума оказывается пропорциональной относительной ширине зубцов АЧХ накопителя , т.е. уменьшается в число раз, равное "скважности" АЧХ Поэтому отношение сиг нал/шум по мощности на выходе накопителя увеличивается в число раз, равное эффективному числу когерентно накапливаемых сигналов . Итак, эффективность когерентного накопления определяется эффективным числом когерентно накапливаемых сигналов . При когерентном накоплении сигналов на всем интервале наблюдения () максимальная эффективность когерентного накопления равна числу одиночных сигналов последовательности . Действительно, амплитуда синфазно (или когерентно) суммируемых сигналов увеличивается при этом в N раз, а мощность в раз. Мощность шума, у которого междупериодная корреляция отсутствует, в результате накопления увеличивается в N раз (аналогично дисперсии суммы независимых слагаемых). В итоге отношение сигнал/шум по мощности возрастает пропорционально числу накапливаемых сигналов N . Отношение сигнал/шум по мощности в результате когерентного накопления последовательности одиночных сигналов может быть также представлено отношением энергии последовательности ("пачки") сигналов к спектральной плотности шума , поскольку последовательность ("пачку") медленно флуктуирующих сиг налов, когда интервал когерентности намного превышает время наблюдения () можно рассматривать как единый сигнал, известной формы. Продолжая эту аналогию "пачки" с сигналом известной формы, можно заметить, что для такого сигнала возможны различные варианты степени известности начальной фазы и амплитуды к соответствующие этим вариантам характеристики обнаружения: a) «Пачка» одиночных сигналов с известной начальной фазой и неслучайной амплитудой , , б) «Пачка» одиночных сигналов с неизвестной начальной фазой и неслучайной амплитудой , , в) «Пачка» одиночных сигналов с неизвестной начальной фазой и случайной амплитудой . Здесь под параметром понимается отношение сигнал/шум по напряжению на выходе когерентного накопителя, которое функционально связано с отношением сигнал/шум по мощности ЛИТЕРАТУРА 1. Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, МРТИ, 2004. 2. Медицинская техника, М., Медицина 1996-2000 г. 3. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006. 4. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2005. 5. Радиотехника и электроника. Межведоств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004. |
|