![]() |
||
Главная Рефераты по сексологии Рефераты по информатике программированию Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии Рефераты по геополитике Рефераты по государству и праву Рефераты по гражданскому праву и процессу Рефераты по делопроизводству Рефераты по кредитованию Рефераты по естествознанию Рефераты по истории техники Рефераты по журналистике Рефераты по зоологии Рефераты по инвестициям Рефераты по информатике Исторические личности Рефераты по кибернетике Рефераты по коммуникации и связи |
Реферат: Динамическое программирование и вариационное исчислениеРеферат: Динамическое программирование и вариационное исчислениеМинистерство образования РФ Южно-Уральский государственный университет Кафедра Автоматики и управления Реферат по математическим основам теории систем на тему Динамическое программирование и вариационное исчисление Выполнил: Группа: ПС-263 Проверил: Разнополов О. А. Челябинск 2003 1. Динамические задачи оптимизации управления 1.1. Постановка задачи динамического программирования Среди разнообразных задач кибернетики значительное место занимают задачи, в которых объект управления находится в состоянии непрерывного движения и изменения под воздействием различных внешних и внутренних факторов. Задачи управления такими объектами относятся к классу динамических задач управления. Объект называется управляемым, если среди действующих на него разнообразных факторов имеются такие, распоряжаясь которыми, можно изменять характер его движения. Такие целенаправленные воздействия называются управлениями и обозначаются u(t). Характер движения объекта управления определяется системой дифференциальных уравнений, которую удобно сокращенно записывать в векторной форме в виде одного дифференциального уравнения: x(t)=g(x,u), x(0)=c. Управление u(t) входит в уравнение, так что это уравнение определяет не просто конкретное движение объекта, а лишь его технические возможности, которые могут быть реализованы путем использования того или иного управления из пространства допустимых управлений U. Оценить, насколько при том или ином способе управления достигаются поставленные цели, можно, как и раньше, путем введения целевой функции, которую в данном случае удобно записать в виде J=J[x(t),x(t),u(t),t]. Так, если u(t) - мгновенный расход топлива, а x(t) - мгновенная скорость самолета, то с точки зрения расхода топлива качество управления в любой момент времени может быть охарактеризовано величиной J(t)=u(t)/x(t) (мгновенный расход топлива на единицу пути), которая, естественно, будет зависеть от состояния природы, т.е. от совокупности внешних факторов, определяющих условия полета. Целевая функция в виде, записанном выше, используется редко, так как она дает оценку лишь мгновенных значений управляемого процесса, тогда как в большинстве задач бывает необходимо оценить процессы в объекте управления на протяжении всего времени управления от 0 до Т. Во
многих случаях целевую функцию удается подобрать так, что оценку процесса в
объекте управления можно произвести путем интегрирования целевой функции за все
время управления, т.е. за критерий качества управления принять функционал J(u)= Так, если целевая функция имеет физический смысл потерь, то можно определяет суммарные потери за весь процесс управления. Иногда в качестве цели управления удается задать желаемый ход процесса z(t). При этом в качестве целевой функции можно взять квадрат или абсолютное значение отклонения процесса x(t) от желаемого: J=[x(t)-z(t)]2, J=| x(t)-z(t)| . В этих случаях критерий качества управления будет определять полную квадратичную или абсолютную ошибку. В динамических задачах управления наряду с ограничениями, определяющими пространство допусхидшх. управлений U, приходится иметь дело с интегральными ограничениями вида
Весьма часто, например, приходится сталкиваться с необходимостью ограничения пределов изменения мгновенного значения некоторого параметра а(х,u) в процессе управления. Обозначим через a0 то значение параметра а, превышение которого является нежелательным. Если подынтегральную функцию H(х, u), называемую в данном случае функцией штрафа, определить из соотношения то интегральное ограничение будет выражать требование, чтобы мгновенное параметра а могло превышать а0 лишь кратковременно и на незначительную величину. Это условие будет выполняться тем жестче, чем меньше К. так, при К=0 ограничение вообще не будет допускать превышениен а над а0. Такие ограничения возникают также тогда, когда приходится иметь дело с ограниченными ресурсами: может быть ограничено находящееся в распоряжении количество энергии, топлива,если речь идет о траекториях, и т.п. Приведенные соотношения позволяют дать следующее определение оптимального управления в динамических системах. Оптимальным называется управление u*(t), выбираемое из прастранства допустимых управлений U, такое, которое для объекта, описываемого дифференциальным уравнением, минимизирует критерий качества при заданных ограничениях на используемые ресурсы. 1.2. Многошаговые процессы управления 1.2.1. Поведение динамической системы как функция начального состояния Нахождение оптимального управления в динамических системах во многих случаях существенно облегчается, если процесс управления удается разбить естественным или искусственным путем на отдельные шаги или этапы. Для того чтобы вести рассмотрение в общем виде, будем считать, что состояние объекта описывается многомерной переменной х={x1,...,хn). Предполагая, что процесс является неуправляемым и неопределенность в состоянии природы отсутствует, дифференциальное уравнение, определяющее движение объекта, запишем в виде: x(t)=g(x), x(0)=c. Решение этого уравнения записывают обычно как х=х(t), чем подчеркивается зависимость решения от времени. Однако не менее важно то, что решение уравнения зависит от начального состояния с. Поэтому более строгой является такая форма записи, которая показывает явную зависимость решения х как от времени, так и начального состояния: х=х(c, t)=х[x(0), t]. Такая форма записи позволяет рассматривать состояние системы в произвольный момент времени t как некоторое преобразование начального состояния х(0)=с на интервале t. Рассмотрим движение объекта на интервале от 0 до t2, который промежуточной точкой t1 разобьем на два интервала длительностью t1 и τ=t2-t1. Рассмотрим три состояния объекта управления: начальное состояние х(о) =с; состояние х(с, t1) в промежуточный момент t1 ; состояние х(с, t2) в конечный момент t2; К описанию последнего состояния можно подойти двояким образом. Это состояние можно рассматривать или как преобразование начального состояния х(о)=с на интервале t2=t1+ τ: х(с, t2)= х(с, t1 + τ) или как преобразование состояния х(с, t1) на интервале τ: х(с, t2)= х[x(с, t1), τ]. Так как оба выражения описывают одно и то же состояние, то, приравнивая их, получаем соотношение: х(с, t1 + τ)=х[x(с, t1), τ]. 1.2.2. Представление динамического процесса в виде последовательности преобразований Предположим, что динамический процесс х(с, t) на интервале от 0 до tf может быть естественным или искусственным образом представлен как многошаговый, и найдем подходящий способ описания такого процесса. Для того чтобы получить многошаговый процесс, интервал от 0 до tf следует разбить на n последовательных шагов, длительности которых примем равными τ1,τ2,..., τn. Обозначим через tk(k=0,...,n) моменты окончания k-го шага так, что tk+1= tk+τk+1, а через xk - состояние объекта в момент tk: xk=x(c,tk). Рассмотрим состояние xk+1=x(c,tk+1)=x(c,tk+τk+1). Это выражение в можно представить в виде: xk+1=x[x(c,tk),τk+1]=x(xk,τk+1). Это соотношение представляет состояние объекта xk+1 как результат преобразования состояния xk на (k+1)-м шаге. Введем в рассмотрение оператор Т, который будет означать преобразование состояния процесса за один шаг: Т (xk) = x(xk, τk+1), k = 0,n-1. Тогда получим: xk+1=Т (xk). Полагая k=0,n-1, можем описать весь динамический процесс в виде последовательности преобразований x0=c , x1=Т (x0), , xn=Т (xn-1). 1.2.3. Многошаговый процесс управления Динамический процесс, описываемый преобразованием xk+1=Т(xk), является неуправляемым. Для получения управляемого многошагового процесса необходимо иметь возможность на каждом шаге осуществлять не одно преобразование Т(хk), а одно из множества преобразований Тi(хk). Удобно считать, что конкретный вид преобразования будет зависеть от параметра uk, который на k-м шаге может принимать одно из множества значений Uk. Параметр uk будем называть управлением, а множество Uk - пространством допустимых управлений на k-м шаге. Преобразование, осуществляемое на k-м шаге, теперь можно записать в виде xk+1=Т(xk, uk), uk Если в этом соотношении положить последовательно tk=0,n-1 и учесть начальное состояние х0, то получим описание всего управляемого многошагового процесса: xk+1=Т(xk, uk), uk Данное соотношение, называемое разностным уравнением объекта управления, аналогично дифференциальному уравнению, дающему описание непрерывного динамического процесса. 2. Оптимальное управление как вариационная задача 2.1. Математическая формулировка задачи оптимального управления Характерной тенденцией в построении современных систем автоматического управления является стремление получать системы, которые в некотором смысле являются наилучшими. При управлении технологическими процессами это стремление выражается в том, чтобы улучать максимальное количество продукции высокого качества при ограниченном использовании ресурсов (сырья, энергии и т.п.). В системах управления кораблями, самолетами, ракетами стремятся минимизировать время, по истечении которого объект выходит в заданную точку или на заданную траекторию при ограничении угла отклонения рулей, количества расходуемого топлива и т. п. В следящих и стабилизирующих системах представляет интерес достижение максимальной точности при наличии всевозможных ограничений, накладываемых на координаты регулируемого объекта, исполнительные элементы и регулятор. Во всех этих примерах задачи управления сводятся к нахождению наилучшего в определенном смысле слова процесса из множества возможных процессов, т.е. относятся к классу динамических задач управления. Как было
показано ранее, математическая формулировка динамических задач оптимального
управления сводится к следующему. Имеется объект управления, состояние которого
характеризуется многомерной переменной х={х1,…,xn}. Характер процессов в объекте управления можно изменять,
используя то или иное упвление u из
пространства допустимых правлений U. В общем случае управление u За критерий качества управления принимается интегральная оценка вида J(u)=
Как было установлено ранее, оптимальным называется такое управление u* из множества допустимых управлений U, при котором для объекта, описываемого дифференциальным уравнением, и заданных ограничениях на используемые ресурсы критерий качества управления принимает минимальное (максимальное) значение. Сформулированная подобным образом задача оптимального управления относится к классу вариационных задач, решением которых занимается раздел математики, получивший название вариационного исчисления. Величина J(u) получила название функционала. В отличие от функции, например, f(x), численные значения которой задаются на множестве значений аргумента х, численные значения функционала J(u) задаются на множестве всевозможных управлений u(t). Задача нахождения оптимального управления сводится к тому, чтобы из множества допустимых управлений U выбрать такое, при котором функционал J(t) принимает минимальное численное значение. 2.2. Постановка вариационной задачиОбычно задачи, требующие минимизации функционала, подчиненного дифференциальному соотношению, при наличии интегрального ограничения заменяются минимизацией нового функционала J(u)= подчиненного только дифференциальному соотношению. Параметр λ, в функционале, получивший название множителя Лагранжа, в задачах оптимизации управления играет роль «цены» ограниченных ресурсов. Его значение находится из граничных условий вариационной задачи. Возможность упрощения вариационной задачи с интегральными ограничениями посредством введения множителей Лагранжа вытекает из следующей теоремы. Теорема
1. Если u(t)-оптимальное управление, при котором функционал J(u)= Доказательство:
следует от противного. Пусть v(t)-другое управление, отличное от u(t), причем такое, что и
выполнено условие Тогда = Важнейшим понятием вариационного исчисления является понятие вариации функции, которое при исследовании функционалов играет такую же роль, как дифференциал при исследовании функций. Пусть f(x) – функция, непрерывная на интервале [a,b]. Рассмотрим внутреннюю точку х этого интервала и некоторое фиксированное значение дифференциала аргумента функции ∆x=dx. Разность f(x+∆x)-f(x)=df(x)=f(x)∆x называется дифференциалом функции f(x) в точке х. Как известно, условие df(x)=0 является необходимым условием минимума (максимума) функции f(x) в точке х. Получим аналогичные соотношения в вариационноми исчислении. Рассмотрим задачу с закреплёнными концами при фиксированном времени. Пусть задана некоторая целевая функция J= Пусть у нас имеется оптимальное решение x(t)=x*(t). Проведём
сдвиг от этого решения: выберем произвольную функцию η(t),
такую, что η(t0)=η(tf)=0, η(t) Тогда наше решение запишется какx(t)=x*(t)+εη(t) и
соответственно x(t)=x*(t)+εη(t), где ε=[ε1,…,εn]T , ε
|
|